{ "id": "2307.06603", "version": "v1", "published": "2023-07-13T07:56:19.000Z", "updated": "2023-07-13T07:56:19.000Z", "title": "Representations of the rational Cherednik algebra $H_{t,c}(S_3,\\h)$ in positive characteristic", "authors": [ "Martina Balagovic", "Jordan Barnes" ], "categories": [ "math.RT" ], "abstract": "We study the rational Cherednik algebra $H_{t,c}(S_3,\\h)$ of type $A_2$ in positive characteristic $p$, and its irreducible category $\\mathcal{O}$ representations $L_{t,c}(\\tau)$. For every possible value of $p,t,c$, and $\\tau$ we calculate the Hilbert polynomial and the character of $L_{t,c}(\\tau)$, and give explicit generators of the maximal proper graded submodule of the Verma module.", "revisions": [ { "version": "v1", "updated": "2023-07-13T07:56:19.000Z" } ], "analyses": { "keywords": [ "rational cherednik algebra", "positive characteristic", "representations", "maximal proper graded submodule", "hilbert polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }