{ "id": "2307.06514", "version": "v1", "published": "2023-07-13T01:26:03.000Z", "updated": "2023-07-13T01:26:03.000Z", "title": "Unitarizability of Harish-Chandra bimodules over generalized Weyl and $q$-Weyl algebras", "authors": [ "Daniil Klyuev" ], "comment": "42 pages", "categories": [ "math.RT", "math-ph", "math.MP", "math.QA" ], "abstract": "Let $\\mathcal{A}$ be a generalized Weyl or $q$-Weyl algebra, $M$ be an $\\mathcal{A}$-$\\overline{\\mathcal{A}}$ bimodule. Choosing an automorphism $\\rho$ of $\\mathcal{A}$ we can define the notion of an invariant Hermitian form: $(au,v)=(u,v\\rho(a))$ for all $a\\in \\mathcal{A}$ and $u,v\\in M$. Papers [P. Etingof, D. Klyuev, E. Rains, D. Stryker. Twisted traces and positive forms on quantized Kleinian singularities of type A. SIGMA 17 (2021), 029, 31 pages, arXiv:2009.09437] and [D. Klyuev. Twisted traces and positive forms on generalized q-Weyl algebras. SIGMA 18 (2022), 009, 28 pages, arXiv:2105.12652] obtained a classification of invariant positive definite Hermitian forms in the case when $M=\\mathcal{A}=\\overline{\\mathcal{A}}$, the case of the regular bimodule. We obtain a classification of invariant positive definite forms on $M$ in the case when $\\mathcal{A}$ has no finite-dimensional representations.", "revisions": [ { "version": "v1", "updated": "2023-07-13T01:26:03.000Z" } ], "analyses": { "keywords": [ "weyl algebra", "generalized weyl", "harish-chandra bimodules", "invariant positive definite hermitian forms", "unitarizability" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }