{ "id": "2307.03938", "version": "v1", "published": "2023-07-08T09:13:55.000Z", "updated": "2023-07-08T09:13:55.000Z", "title": "Abundance for threefolds in positive characteristic when $ν=2$", "authors": [ "Zheng Xu" ], "categories": [ "math.AG" ], "abstract": "In this paper, we prove the abundance conjecture for threefolds over an algebraically closed field $k$ of characteristic $p > 3$ in the case of numerical dimension equals to $2$. More precisely, we prove that if $(X,B)$ be a projective lc threefold pair over $k$ such that $K_{X}+B$ is nef and $\\nu(K_{X}+B)=2$, then $K_{X}+B$ is semiample.", "revisions": [ { "version": "v1", "updated": "2023-07-08T09:13:55.000Z" } ], "analyses": { "keywords": [ "positive characteristic", "projective lc threefold pair", "abundance conjecture", "numerical dimension equals", "algebraically closed field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }