{ "id": "2307.03282", "version": "v1", "published": "2023-07-06T20:35:59.000Z", "updated": "2023-07-06T20:35:59.000Z", "title": "Feynman path integrals on compact Lie groups with bi-invariant Riemannian metrics and Schrödinger equations", "authors": [ "Nicoló Drago", "Sonia Mazzucchi", "Valter Moretti" ], "comment": "50 pages", "categories": [ "math-ph", "math.MP", "math.PR" ], "abstract": "In this work we consider a suitable generalization of the Feynman path integral on a specific class of Riemannian manifolds consisting of compact Lie groups with bi-invariant Riemannian metrics. The main tools we use are the Cartan development map, the notion of oscillatory integral, and the Chernoff approximation theorem. We prove that, for a class of functions of a dense subspace of the relevant Hilbert space, the Feynman map produces the solution of the Schr\\\"odinger equation, where the Laplace-Beltrami operator coincides with the second order Casimir operator of the group.", "revisions": [ { "version": "v1", "updated": "2023-07-06T20:35:59.000Z" } ], "analyses": { "keywords": [ "compact lie groups", "bi-invariant riemannian metrics", "feynman path integral", "schrödinger equations", "second order casimir operator" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }