{ "id": "2307.03069", "version": "v1", "published": "2023-07-06T15:35:53.000Z", "updated": "2023-07-06T15:35:53.000Z", "title": "Deviation Inequalities on the Spectral Norm of Products of Random and Deterministic Matrices", "authors": [ "Guozheng Dai", "Zhonggen Su", "Hanchao Wang" ], "comment": "arXiv admin note: text overlap with arXiv:0812.2432, arXiv:0802.3956 by other authors", "categories": [ "math.PR" ], "abstract": "We study the spectral norm of matrices $BA$, where $A$ is a random matrix with independent mean zero subexponential entries, and $B$ is a fixed matrix. We show that the spectral norm of such an $m\\times n$ matrix $BA$ exceeds $\\sqrt{n}+\\sqrt{m}$ with an exponential decay probability. Applying this result, we prove an estimate of the smallest singular value of a random subexponential matrix using an argument in the previous work of Rudelson and Vershynin.", "revisions": [ { "version": "v1", "updated": "2023-07-06T15:35:53.000Z" } ], "analyses": { "subjects": [ "60F05", "60F17" ], "keywords": [ "spectral norm", "deterministic matrices", "deviation inequalities", "independent mean zero subexponential entries", "random subexponential matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }