{ "id": "2307.02550", "version": "v1", "published": "2023-07-05T18:00:05.000Z", "updated": "2023-07-05T18:00:05.000Z", "title": "K-classes of delta-matroids and equivariant localization", "authors": [ "Christopher Eur", "Matt Larson", "Hunter Spink" ], "comment": "19 pages", "categories": [ "math.CO", "math.AG" ], "abstract": "Delta-matroids are \"type B\" generalizations of matroids in the same way that maximal orthogonal Grassmannians are generalizations of Grassmannians. A delta-matroid analogue of the Tutte polynomial of a matroid is the interlace polynomial. We give a geometric interpretation for the interlace polynomial via the K-theory of maximal orthogonal Grassmannians. To do so, we develop a new Hirzebruch-Riemann-Roch-type formula for the type B permutohedral variety.", "revisions": [ { "version": "v1", "updated": "2023-07-05T18:00:05.000Z" } ], "analyses": { "keywords": [ "equivariant localization", "maximal orthogonal grassmannians", "interlace polynomial", "delta-matroid analogue", "generalizations" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }