{ "id": "2307.02481", "version": "v1", "published": "2023-07-05T17:55:39.000Z", "updated": "2023-07-05T17:55:39.000Z", "title": "Non-equilibrium steady state of the symmetric exclusion process with reservoirs", "authors": [ "Simone Floreani", "Adrián González Casanova" ], "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP" ], "abstract": "Consider the open symmetric exclusion process on a connected graph with vertexes in $[N-1]:=\\{1,\\ldots, N-1\\}$ where points $1$ and $N-1$ are connected, respectively, to a left reservoir and a right reservoir with densities $\\rho_L,\\rho_R\\in(0,1)$. We prove that the non-equilibrium steady state of such system is $$\\mu_{\\text{stat}} = \\sum_{I\\subset \\mathcal P([N-1]) }F(I)\\bigg(\\otimes_{x\\in I}\\rm{Bernoulli}(\\rho_R)\\otimes_{y\\in [N-1]\\setminus I}\\rm{Bernoulli}(\\rho_L) \\bigg).$$ In the formula above $ \\mathcal P([N-1])$ denotes the power set of $[N-1]$ while the numbers $F(I)> 0$ are such that $\\sum_{I\\subset \\mathcal P([N-1]) }F(I)=1$ and given in terms of absorption probabilities of the absorbing stochastic dual process. Via probabilistic arguments we compute explicitly the factors $F(I)$ when the graph is a homogeneous segment.", "revisions": [ { "version": "v1", "updated": "2023-07-05T17:55:39.000Z" } ], "analyses": { "subjects": [ "60K35", "82C22", "60K37", "82C23" ], "keywords": [ "non-equilibrium steady state", "open symmetric exclusion process", "absorbing stochastic dual process", "absorption probabilities", "power set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }