{ "id": "2307.02160", "version": "v1", "published": "2023-07-05T10:01:32.000Z", "updated": "2023-07-05T10:01:32.000Z", "title": "Invariance principle for Lifts of Geodesic Random Walks", "authors": [ "Jonathan Junné", "Frank Redig", "Rik Versendaal" ], "categories": [ "math.PR", "math.DG" ], "abstract": "We consider a certain class of Riemannian submersions $\\pi : N \\to M$ and study lifted geodesic random walks from the base manifold $M$ to the total manifold $N$. Under appropriate conditions on the distribution of the speed of the geodesic random walks, we prove an invariance principle; i.e., convergence to horizontal Brownian motion for the lifted walks. This gives us a natural probabilistic proof of the geometric identity relating the horizontal Laplacian $\\Delta_\\H$ on $N$ and the Laplace-Beltrami operator $\\Delta_M$ on $M$. In particular, when $N$ is the orthonormal frame bundle $O(M)$, this identity is central in the Malliavin-Eells-Elworthy construction of Riemannian Brownian motion.", "revisions": [ { "version": "v1", "updated": "2023-07-05T10:01:32.000Z" } ], "analyses": { "subjects": [ "60J65", "60K35", "58J65" ], "keywords": [ "invariance principle", "study lifted geodesic random walks", "orthonormal frame bundle", "natural probabilistic proof", "riemannian brownian motion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }