{ "id": "2306.12039", "version": "v1", "published": "2023-06-21T06:08:47.000Z", "updated": "2023-06-21T06:08:47.000Z", "title": "Classification of solutions to the anisotropic $N$-Liouville equation in $\\mathbb{R}^N$", "authors": [ "Giulio Ciraolo", "Xiaoliang Li" ], "categories": [ "math.AP" ], "abstract": "Given $N\\geq 2$, we completely classify the solutions of the anisotropic $N$-Liouville equation $$-\\Delta_N^H\\,u=e^u \\quad\\text{in }\\mathbb{R}^N,$$ under the finite mass condition $\\int_{\\mathbb{R}^N} e^u\\,dx<+\\infty$. Here $\\Delta_N^H$ is the so-called Finsler $N$-Laplacian induced by a positively homogeneous function $H$. As a consequence for $N=2$, we give an affirmative answer to a conjecture made in [G. Wang and C. Xia, J. Differential Equations 252 (2012) 1668--1700].", "revisions": [ { "version": "v1", "updated": "2023-06-21T06:08:47.000Z" } ], "analyses": { "keywords": [ "liouville equation", "anisotropic", "classification", "finite mass condition", "differential equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }