{ "id": "2306.10523", "version": "v1", "published": "2023-06-18T11:01:18.000Z", "updated": "2023-06-18T11:01:18.000Z", "title": "On Periodic Points in Covering Systems", "authors": [ "Yihan Wang" ], "comment": "12 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:2205.07225", "categories": [ "math.DS", "math.CO" ], "abstract": "We study a system of intervals $I_1,\\ldots,I_k$ on the real line and a continuous map $f$ with $f(I_1 \\cup I_2 \\cup \\ldots \\cup I_k)\\supseteq I_1 \\cup I_2 \\cup \\ldots \\cup I_k$. It's conjectured that there exists a periodic point of period $\\le k$ in $I_1\\cup \\ldots \\cup I_k$. In this paper, we prove the conjecture by a discretization method and reduce the initial problem to an interesting combinatorial lemma concerning cyclic permutations. We also obtain a non-concentration property of periodic points of small periods in intervals.", "revisions": [ { "version": "v1", "updated": "2023-06-18T11:01:18.000Z" } ], "analyses": { "keywords": [ "periodic point", "covering systems", "combinatorial lemma concerning cyclic permutations", "interesting combinatorial lemma concerning cyclic", "real line" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }