{ "id": "2306.10390", "version": "v1", "published": "2023-06-17T16:52:48.000Z", "updated": "2023-06-17T16:52:48.000Z", "title": "Determinantal expressions of certain integrals on symmetric spaces", "authors": [ "Salem Said", "Cyrus Mostajeran" ], "categories": [ "math.DG" ], "abstract": "The integral of a function $f$ defined on a symmetric space $M \\simeq G/K$ may be expressed in the form of a determinant (or Pfaffian), when $f$ is $K$-invariant and, in a certain sense, a tensor power of a positive function of a single variable. The paper presents a few examples of this idea and discusses future extensions. Specifically, the examples involve symmetric cones, Grassmann manifolds, and classical domains.", "revisions": [ { "version": "v1", "updated": "2023-06-17T16:52:48.000Z" } ], "analyses": { "keywords": [ "symmetric space", "determinantal expressions", "tensor power", "symmetric cones", "grassmann manifolds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }