{ "id": "2306.10218", "version": "v1", "published": "2023-06-17T00:46:05.000Z", "updated": "2023-06-17T00:46:05.000Z", "title": "Bounds for orders of zeros of a class of Eisenstein series and their applications on dual pairs of eta quotients", "authors": [ "Amir Akbary", "Zafer Selcuk Aygin" ], "categories": [ "math.NT" ], "abstract": "Let $k$ be an even positive integer, $p$ be a prime and $m$ be a nonnegative integer. We find an upper bound for orders of zeros (at cusps) of a linear combination of classical Eisenstein series of weight $k$ and level $p^m$. As an immediate consequence we find the set of all eta quotients that are linear combinations of these Eisenstein series and hence the set of all eta quotients of level $p^m$ whose derivatives are also eta quotients.", "revisions": [ { "version": "v1", "updated": "2023-06-17T00:46:05.000Z" } ], "analyses": { "subjects": [ "11F11", "11F20", "11F27" ], "keywords": [ "eta quotients", "dual pairs", "applications", "linear combination", "upper bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }