{ "id": "2306.07546", "version": "v1", "published": "2023-06-13T05:37:11.000Z", "updated": "2023-06-13T05:37:11.000Z", "title": "Quasi-stationary distributions for time-changed symmetric $α$-stable processes killed upon hitting zero", "authors": [ "Zhe-Kang Fang", "Yong-Hua Mao", "Tao Wang" ], "comment": "19pages", "categories": [ "math.PR" ], "abstract": "For a time-changed symmetric $\\alpha$-stable process killed upon hitting zero, under the condition of entrance from infinity, we prove the existence and uniqueness of quasi-stationary distribution (QSD). The exponential convergence to the QSD from any initial distribution is proved under conditions on transition densities.", "revisions": [ { "version": "v1", "updated": "2023-06-13T05:37:11.000Z" } ], "analyses": { "keywords": [ "quasi-stationary distribution", "stable process", "hitting zero", "time-changed symmetric", "transition densities" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }