{ "id": "2306.06873", "version": "v1", "published": "2023-06-12T05:12:59.000Z", "updated": "2023-06-12T05:12:59.000Z", "title": "Affine Deligne-Lusztig varieties via the double Bruhat graph II: Iwahori-Hecke algebra", "authors": [ "Felix Schremmer" ], "comment": "37 pages; comments appreciated", "categories": [ "math.RT", "math.AG" ], "abstract": "We introduce a new language to describe the geometry of affine Deligne-Lusztig varieties in affine flag varieties. This second part of a two paper series uses this new language, i.e. the double Bruhat graph, to describe certain structure constants of the Iwahori-Hecke algebra. As an application, we describe nonemptiness and dimension of affine Deligne-Lusztig varieties for most elements of the affine Weyl group and arbitrary $\\sigma$-conjugacy classes.", "revisions": [ { "version": "v1", "updated": "2023-06-12T05:12:59.000Z" } ], "analyses": { "subjects": [ "20G25", "11G25", "20C08" ], "keywords": [ "affine deligne-lusztig varieties", "double bruhat graph", "iwahori-hecke algebra", "affine flag varieties", "affine weyl group" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }