{ "id": "2306.06575", "version": "v1", "published": "2023-06-11T03:44:32.000Z", "updated": "2023-06-11T03:44:32.000Z", "title": "Finiteness of physical measures for diffeomorphisms with multi 1-D centers", "authors": [ "Yongluo Cao", "Zeya Mi" ], "categories": [ "math.DS" ], "abstract": "Let $f$ be a $C^2$ diffeomorphism on compact Riemannian manifold $M$ with partially hyperbolic splitting $$ TM=E^u\\oplus E_1^c\\oplus\\cdots\\oplus E_k^c \\oplus E^s, $$ where $E^u$ is uniformly expanding, $E^s$ is uniformly contracting, and ${\\rm dim}E_i^c=1,~ 1\\le i \\le k, ~k\\ge 1$. We prove the finiteness of ergodic physical(SRB) measures of $f$ under the hyperbolicity of Gibbs $u$-states.", "revisions": [ { "version": "v1", "updated": "2023-06-11T03:44:32.000Z" } ], "analyses": { "subjects": [ "37C40", "37D25", "37D30" ], "keywords": [ "physical measures", "finiteness", "diffeomorphism", "compact riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }