{ "id": "2306.03936", "version": "v1", "published": "2023-06-06T18:01:46.000Z", "updated": "2023-06-06T18:01:46.000Z", "title": "Counting eigenvalues of Schrödinger operators using the landscape function", "authors": [ "Sven Bachmann", "Richard Froese", "Severin Schraven" ], "comment": "21 pages. Comments welcome", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We prove an upper and a lower bound on the rank of the spectral projections of the Schr\\\"odinger operator $-\\Delta + V$ in terms of the volume of the sublevel sets of an effective potential $\\frac{1}{u}$. Here, $u$ is the `landscape function' of (David, G., Filoche, M., & Mayboroda, S. (2021) Advances in Mathematics, 390, 107946) namely the solution of $(-\\Delta + V)u = 1$ in $\\mathbb{R}^d$. We prove the result for non-negative potentials satisfying a Kato and doubling condition, in all spatial dimensions, in infinite volume, and show that no coarse graining is required. Our result yields in particular a necessary and sufficient condition for discreteness of the spectrum.", "revisions": [ { "version": "v1", "updated": "2023-06-06T18:01:46.000Z" } ], "analyses": { "subjects": [ "81Q10", "35P20", "35J10" ], "keywords": [ "landscape function", "schrödinger operators", "counting eigenvalues", "lower bound", "sublevel sets" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }