{ "id": "2306.03499", "version": "v1", "published": "2023-06-06T08:37:33.000Z", "updated": "2023-06-06T08:37:33.000Z", "title": "Non contractible periodic orbits for generic hamiltonian diffeomorphisms of surfaces", "authors": [ "Patrice Le Calvez", "Martin Sambarino" ], "categories": [ "math.DS", "math.SG" ], "abstract": "Let $S$ be a closed surface of genus $g\\geq 1$, furnished with an area form $\\omega$. We show that there exists an open and dense set ${\\mathcal O_r}$ of the space of Hamiltonian diffeomorphisms of class $C^r$, $1\\leq r\\leq\\infty$, endowed with the $C^r$-topology, such that every $f\\in \\mathcal O_r$ possesses infinitely many non contractible periodic orbits. We obtain a positive answer to a question asked by Viktor Ginzburg and Ba\\c{s}ak G\\\"{u}rel. The proof is a consequence of recent previous works of the authors [LecSa].", "revisions": [ { "version": "v1", "updated": "2023-06-06T08:37:33.000Z" } ], "analyses": { "subjects": [ "37C05", "37C20", "37C25", "37C29", "37E30", "37E45", "37J12" ], "keywords": [ "non contractible periodic orbits", "generic hamiltonian diffeomorphisms", "area form", "dense set", "viktor ginzburg" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }