{ "id": "2306.03047", "version": "v1", "published": "2023-06-05T17:19:03.000Z", "updated": "2023-06-05T17:19:03.000Z", "title": "A packing exponent formula for the upper box dimension of certain self-projective fractals", "authors": [ "Benedict Sewell" ], "categories": [ "math.DS" ], "abstract": "In this note, we prove a packing exponent formula for the upper box-counting dimension of attractors of certain projective iterated function systems. In particular, this shows that the upper box-counting dimension of the Rauzy gasket lies between 1.6910 and 1.7415, and partially affirms a conjecture of De Leo.", "revisions": [ { "version": "v1", "updated": "2023-06-05T17:19:03.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78" ], "keywords": [ "packing exponent formula", "upper box dimension", "self-projective fractals", "upper box-counting dimension", "rauzy gasket lies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }