{ "id": "2306.02803", "version": "v1", "published": "2023-06-05T11:57:08.000Z", "updated": "2023-06-05T11:57:08.000Z", "title": "Existence of density functions for SDEs driven by pure-jump processes", "authors": [ "Takuya Nakagawa", "Ryoichi Suzuki" ], "comment": "21 pages", "categories": [ "math.PR" ], "abstract": "We verify the existence of density functions of the running maximum of a stochastic differential equation (SDE) driven by a Brownian motion and a non-truncated stable process. This is proved by the existence of density functions of the running maximum of Wiener-Poisson functionals resulting from Bismut's approach to Malliavin calculus for jump processes.", "revisions": [ { "version": "v1", "updated": "2023-06-05T11:57:08.000Z" } ], "analyses": { "subjects": [ "60H10", "60G52", "60H07" ], "keywords": [ "density functions", "pure-jump processes", "sdes driven", "running maximum", "stochastic differential equation" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }