{ "id": "2306.02310", "version": "v1", "published": "2023-06-04T09:31:24.000Z", "updated": "2023-06-04T09:31:24.000Z", "title": "Linear response for intermittent maps with critical point", "authors": [ "Juho Leppänen" ], "comment": "31 pages", "categories": [ "math.DS" ], "abstract": "We consider a two-parameter family of maps $T_{\\alpha, \\beta} : [0,1] \\to [0,1]$ with a neutral fixed point and a non-flat critical point. Building on a cone technique due to Baladi and Todd, we show that for a class of $L^q$ observables $\\phi : [0,1] \\to \\mathbb{R}$, the bivariate map $(\\alpha, \\beta) \\mapsto \\int_0^1 \\phi \\, d\\mu_{\\alpha,\\beta}$, where $\\mu_{\\alpha, \\beta}$ denotes the invariant SRB measure, is differentiable in a certain parameter region, and establish a formula for its directional derivative.", "revisions": [ { "version": "v1", "updated": "2023-06-04T09:31:24.000Z" } ], "analyses": { "subjects": [ "37A05", "37E05" ], "keywords": [ "intermittent maps", "linear response", "invariant srb measure", "neutral fixed point", "bivariate map" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }