{ "id": "2306.00768", "version": "v1", "published": "2023-06-01T15:03:35.000Z", "updated": "2023-06-01T15:03:35.000Z", "title": "Maps of bounded variation from PI spaces to metric spaces", "authors": [ "Camillo Brena", "Francesco Nobili", "Enrico Pasqualetto" ], "comment": "38 pages", "categories": [ "math.FA", "math.AP", "math.MG" ], "abstract": "We study maps of bounded variation defined on a metric measure space and valued into a metric space. Assuming the source space to satisfy a doubling and Poincar\\'e property, we produce a well-behaved relaxation theory via approximation by simple maps. Moreover, several equivalent characterizations are given, including a notion in weak duality with test plans.", "revisions": [ { "version": "v1", "updated": "2023-06-01T15:03:35.000Z" } ], "analyses": { "subjects": [ "53C23", "26A45", "26B30", "49J52", "30L99" ], "keywords": [ "metric space", "bounded variation", "pi spaces", "metric measure space", "study maps" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }