{ "id": "2306.00209", "version": "v1", "published": "2023-05-31T21:58:34.000Z", "updated": "2023-05-31T21:58:34.000Z", "title": "Exponential inequalities in probability spaces revisited", "authors": [ "Ali Barki", "Sergey G. Bobkov", "Esther Bou Dagher", "Cyril Roberto" ], "categories": [ "math.PR", "math.FA" ], "abstract": "We revisit several results on exponential integrability in probability spaces and derive some new ones. In particular, we give a quantitative form of recent results by Cianchi-Musil and Pick in the framework of Moser-Trudinger-type inequalities, and recover Ivanisvili-Russell's inequality for the Gaussian measure. One key ingredient is the use of a dual argument, which is new in this context, that we also implement in the discrete setting of the Poisson measure on integers.", "revisions": [ { "version": "v1", "updated": "2023-05-31T21:58:34.000Z" } ], "analyses": { "keywords": [ "probability spaces", "exponential inequalities", "moser-trudinger-type inequalities", "exponential integrability", "ivanisvili-russells inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }