{ "id": "2306.00033", "version": "v1", "published": "2023-05-31T07:32:14.000Z", "updated": "2023-05-31T07:32:14.000Z", "title": "Sign-Balanced Pattern-Avoiding Permutation Classes", "authors": [ "Junyao Pan", "Pengfei Guo" ], "categories": [ "math.CO", "math.GR" ], "abstract": "A set of permutations is called sign-balanced if the set contains the same number of even permutations as odd permutations. Let $S_n(\\sigma_1, \\sigma_2, \\ldots, \\sigma_r)$ be the set of permutations in the symmetric group $S_n$ which avoids patterns $\\sigma_1, \\sigma_2, \\ldots, \\sigma_r$. The aim of this paper is to investigate when, for certain patterns $\\sigma_1, \\sigma_2, \\ldots, \\sigma_r$, $S_n(\\sigma_1, \\sigma_2, \\ldots, \\sigma_r)$ is sign-balanced for every integer $n>1$. We prove that for any $\\{\\sigma_1, \\sigma_2, \\ldots, \\sigma_r\\}\\subseteq S_3$, if $\\{\\sigma_1, \\sigma_2, \\ldots, \\sigma_r\\}$ is sign-balanced except $\\{132, 213, 231, 312\\}$, then $S_n(\\sigma_1, \\sigma_2, \\ldots, \\sigma_r)$ is sign-balanced for every integer $n>1$. In addition, we give some results in the case of avoiding some patterns of length $4$.", "revisions": [ { "version": "v1", "updated": "2023-05-31T07:32:14.000Z" } ], "analyses": { "subjects": [ "05A05" ], "keywords": [ "sign-balanced pattern-avoiding permutation classes", "odd permutations", "avoids patterns", "set contains", "symmetric group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }