{ "id": "2305.19647", "version": "v1", "published": "2023-05-31T08:23:44.000Z", "updated": "2023-05-31T08:23:44.000Z", "title": "Some properties of I*-sequential topological space", "authors": [ "H. Sabor Behmanush", "M. Kucukaslan" ], "comment": "14 pages", "categories": [ "math.GN" ], "abstract": "In this paper, we will define $\\mathcal{I}^{*}$-sequential topology on a topological space $(X,\\tau)$ where $\\mathcal{I}$ is an ideal of the subset of natural numbers $\\mathbb{N}$. Besides the basic properties of the $\\mathcal{I}^{*}$-sequential topology, we proved that $\\mathcal{I}^{*}$-sequential topology is finer than $\\mathcal{I}$-sequential topology. Further, we will discus main properties of $\\mathcal{I}^{*}$ sequential continuity and $\\mathcal{I}^{*}$ sequential compactness.", "revisions": [ { "version": "v1", "updated": "2023-05-31T08:23:44.000Z" } ], "analyses": { "keywords": [ "topological space", "sequential topology", "discus main properties", "basic properties", "natural numbers" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }