{ "id": "2305.18853", "version": "v1", "published": "2023-05-30T08:49:30.000Z", "updated": "2023-05-30T08:49:30.000Z", "title": "Polarity of points for systems of nonlinear stochastic heat equations in the critical dimension", "authors": [ "Cheuk Yin Lee", "Yimin Xiao" ], "categories": [ "math.PR" ], "abstract": "Let $u(t, x) = (u_1(t, x), \\dots, u_d(t, x))$ be the solution to the systems of nonlinear stochastic heat equations \\[ \\begin{split} \\frac{\\partial}{\\partial t} u(t, x) &= \\frac{\\partial^2}{\\partial x^2} u(t, x) + \\sigma(u(t, x)) \\dot{W}(t, x),\\\\ u(0, x) &= u_0(x), \\end{split} \\] where $t \\ge 0$, $x \\in \\mathbb{R}$, $\\dot{W}(t, x) = (\\dot{W}_1(t, x), \\dots, \\dot{W}_d(t, x))$ is a vector of $d$ independent space-time white noises, and $\\sigma: \\mathbb{R}^d \\to \\mathbb{R}^{d\\times d}$ is a matrix-valued function. We say that a subset $S$ of $\\mathbb{R}^d$ is polar for $\\{u(t, x), t \\ge 0, x \\in \\mathbb{R}\\}$ if \\[ \\mathbb{P}\\{u(t,x) \\in S \\text{ for some } t>0 \\text{ and } x\\in\\mathbb{R} \\}=0. \\] The main result of this paper shows that, in the critical dimension $d=6$, all points in $\\mathbb{R}^d$ are polar for $\\{u(t, x), t \\ge 0, x \\in \\mathbb{R}\\}$. This solves an open problem of Dalang, Khoshnevisan and Nualart (2009, 2013) and Dalang, Mueller and Xiao (2021). We also provide a sufficient condition for a subset $S$ of $\\mathbb{R}^d$ to be polar.", "revisions": [ { "version": "v1", "updated": "2023-05-30T08:49:30.000Z" } ], "analyses": { "keywords": [ "nonlinear stochastic heat equations", "critical dimension", "independent space-time white noises", "sufficient condition", "main result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }