{ "id": "2305.18697", "version": "v1", "published": "2023-05-30T02:42:14.000Z", "updated": "2023-05-30T02:42:14.000Z", "title": "A braid monodromy presentation for the pure braid group", "authors": [ "So Yamagata" ], "comment": "26 pages, 42 figures", "categories": [ "math.GT", "math.CO", "math.GR" ], "abstract": "In the present paper, we consider a ``lexicographic section'' of the braid arrangement, and give a presentation of the fundamental group of its complement using the braid monodromy technique. We show that the resulting presentation coincides with the modified Artin presentation given by Margalit--McCammond. Moreover, we generalize the construction to the Manin--Schechtman arrangement $MS(n,k)$, a generalization of the braid arrangement. In particular, we give a presentation of $\\pi_1(\\mathbb{C}^5 \\setminus MS(5,2))$, which is the simplest and nontrivial example of the Manin--Schechtman arrangements.", "revisions": [ { "version": "v1", "updated": "2023-05-30T02:42:14.000Z" } ], "analyses": { "subjects": [ "20F36", "20F05", "57K20", "14H30" ], "keywords": [ "pure braid group", "braid monodromy presentation", "manin-schechtman arrangement", "braid arrangement", "braid monodromy technique" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }