{ "id": "2305.16672", "version": "v1", "published": "2023-05-26T06:42:04.000Z", "updated": "2023-05-26T06:42:04.000Z", "title": "Strict monotonicity of the first $q$-eigenvalue of the fractional $p$-Laplace operator over annuli", "authors": [ "K Ashok Kumar", "Nirjan Biswas" ], "comment": "14 pages, 2 figures", "categories": [ "math.AP", "math-ph", "math.MP", "math.OC" ], "abstract": "Let $B, B'\\subset \\mathbb{R}^d$ with $d\\geq 2$ be two balls such that $B'\\subset \\subset B$ and the position of $B'$ is varied within $B$. For $p\\in (1, \\infty ),$ $s\\in (0,1)$, and $q \\in [1, p^*_s)$ with $p^*_s=\\frac{dp}{d-sp}$ if $sp < d$ and $p^*_s=\\infty $ if $sp \\geq d$, let $\\lambda ^s_{p,q}(B\\setminus \\overline{B'})$ be the first $q$-eigenvalue of the fractional $p$-Laplace operator $(-\\Delta _p)^s$ in $B\\setminus \\overline{B'}$ with the homogeneous non-local Dirichlet boundary conditions. We prove that $\\lambda ^s_{p,q}(B\\setminus \\overline{B'})$ strictly decreases as the inner ball $B'$ moves towards the outer boundary $\\partial B$. To obtain the strict monotonicity, we establish a strict Faber-Krahn type inequality for $\\lambda _{p,q}^s(\\cdot )$ under polarization. This extends some monotonicity results obtained by Djitte-Fall-Weth (Calc. Var. Partial Differential Equations (2021), 60:231) in the case of $(-\\Delta )^s$ and $q=1, 2$ to $(-\\Delta _p)^s$ and $q\\in [1, p^*_s).$", "revisions": [ { "version": "v1", "updated": "2023-05-26T06:42:04.000Z" } ], "analyses": { "subjects": [ "35R11", "49Q10", "35B51", "35B06", "47J10" ], "keywords": [ "laplace operator", "strict monotonicity", "fractional", "eigenvalue", "strict faber-krahn type inequality" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }