{ "id": "2305.12368", "version": "v1", "published": "2023-05-21T06:36:25.000Z", "updated": "2023-05-21T06:36:25.000Z", "title": "A generalization of Cardy's and Schramm's formulae", "authors": [ "Mikhail Khristoforov", "Mikhail Skopenkov", "Stanislav Smirnov" ], "comment": "14 pages, 6 figures", "categories": [ "math.PR", "math-ph", "math.CV", "math.MP" ], "abstract": "We study critical site percolation on the triangular lattice. We find the difference of the probabilities of having a percolation interface to the right and to the left of two given points in the scaling limit. This generalizes both Cardy's and Schramm's formulae. The generalization involves a new interesting discrete analytic observable and an unexpected conformal mapping.", "revisions": [ { "version": "v1", "updated": "2023-05-21T06:36:25.000Z" } ], "analyses": { "subjects": [ "60K35", "30C30", "33C05", "81T40", "82B43" ], "keywords": [ "schramms formulae", "generalization", "study critical site percolation", "triangular lattice", "percolation interface" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }