{ "id": "2305.09622", "version": "v1", "published": "2023-05-16T17:20:19.000Z", "updated": "2023-05-16T17:20:19.000Z", "title": "Prescribing nearly constant curvatures on balls", "authors": [ "Luca Battaglia", "Sergio Cruz Blázquez", "Angela Pistoia" ], "comment": "31 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "In this paper we address two boundary cases of the classical Kazdan-Warner problem. More precisely, we consider the problem of prescribing the Gaussian and boundary geodesic curvature on a disk of R^2, and the scalar and mean curvature on a ball in higher dimensions, via a conformal change of the metric. We deal with the case of negative interior curvature and positive boundary curvature. Using a Ljapunov-Schmidt procedure, we obtain new existence results when the prescribed functions are close to constants.", "revisions": [ { "version": "v1", "updated": "2023-05-16T17:20:19.000Z" } ], "analyses": { "subjects": [ "35J25", "58J32" ], "keywords": [ "constant curvatures", "prescribing", "boundary geodesic curvature", "classical kazdan-warner problem", "positive boundary curvature" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }