{ "id": "2305.09547", "version": "v1", "published": "2023-05-16T15:42:43.000Z", "updated": "2023-05-16T15:42:43.000Z", "title": "Coherent distributions on the square $\\unicode{x2013}$ extreme points and asymptotics", "authors": [ "Stanisław Cichomski", "Adam Osękowski" ], "categories": [ "math.PR" ], "abstract": "Let $\\mathcal{C}$ denote the family of all coherent distributions on the unit square $[0,1]^2$, i.e. all those probability measures $\\mu$ for which there exists a random vector $(X,Y)\\sim \\mu$, a pair $(\\mathcal{G},\\mathcal{H})$ of $\\sigma$-fields and an event $E$ such that $X=\\mathbb{P}(E|\\mathcal{G})$, $Y=\\mathbb{P}(E|\\mathcal{H})$ almost surely. In this paper we examine the set $\\mathrm{ext}(\\mathcal{C})$ of extreme points of $\\mathcal{C}$ and provide its general characterisation. Moreover, we establish several structural properties of finitely-supported elements of $\\mathrm{ext}(\\mathcal{C})$. We apply these results to obtain the asymptotic sharp bound $$\\lim_{\\alpha \\to \\infty} \\alpha\\cdot \\Big(\\sup_{(X,Y)\\in \\mathcal{C}}\\mathbb{E}|X-Y|^{\\alpha}\\Big) = \\frac{2}{e}.$$", "revisions": [ { "version": "v1", "updated": "2023-05-16T15:42:43.000Z" } ], "analyses": { "keywords": [ "extreme points", "coherent distributions", "asymptotic sharp bound", "unit square", "general characterisation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }