{ "id": "2305.09076", "version": "v1", "published": "2023-05-16T00:11:48.000Z", "updated": "2023-05-16T00:11:48.000Z", "title": "Simple supercuspidal L-packets of split special orthogonal groups over dyadic fields", "authors": [ "Moshe Adrian", "Guy Henniart", "Eyal Kaplan", "Masao Oi" ], "comment": "52 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "We consider the split special orthogonal group $\\mathrm{SO}_{N}$ defined over a $p$-adic field. We determine the structure of any $L$-packet of $\\mathrm{SO}_{N}$ containing a simple supercuspidal representation (in the sense of Gross--Reeder). We also determine its endoscopic lift to a general linear group. Combined with the explicit local Langlands correspondence for simple supercuspidal representations of general linear groups, this leads us to get an explicit description of the $L$-parameter as a representation of the Weil group of $F$. Our result is new when $p=2$ and our method provides a new proof even when $p\\neq2$.", "revisions": [ { "version": "v1", "updated": "2023-05-16T00:11:48.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70", "11L05" ], "keywords": [ "split special orthogonal group", "simple supercuspidal l-packets", "dyadic fields", "simple supercuspidal representation", "general linear group" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable" } } }