{ "id": "2305.07905", "version": "v1", "published": "2023-05-13T12:06:50.000Z", "updated": "2023-05-13T12:06:50.000Z", "title": "Semiaffine sets in Abelian groups", "authors": [ "Iryna Banakh", "Taras Banakh", "Maria Kolinko", "Alex Ravsky" ], "comment": "5 pages", "categories": [ "math.GR" ], "abstract": "A subset $X$ of an Abelian group $G$ is called $semiaf\\!fine$ if for every $x,y,z\\in X$ the set $\\{x+y-z,x-y+z\\}$ intersects $X$. We prove that a subset $X$ of an Abelian group $G$ is semiaffine if and only if one of the following conditions holds: (1) $X=(H+a)\\cup (H+b)$ for some subgroup $H$ of $G$ and some elements $a,b\\in X$; (2) $X=(H\\setminus C)+g$ for some $g\\in G$, some subgroup $H$ of $G$ and some midconvex subset $C$ of the group $H$. A subset $C$ of a group $H$ is $midconvex$ if for every $x,y\\in C$, the set $\\frac{x+y}2:=\\{z\\in H:2z=x+y\\}$ is a subset of $C$.", "revisions": [ { "version": "v1", "updated": "2023-05-13T12:06:50.000Z" } ], "analyses": { "subjects": [ "05E16", "20K99", "52A01" ], "keywords": [ "abelian group", "semiaffine sets", "midconvex subset" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }