{ "id": "2305.07885", "version": "v1", "published": "2023-05-13T10:10:56.000Z", "updated": "2023-05-13T10:10:56.000Z", "title": "Sharp deviation bounds and concentration phenomenon for the squared norm of a sub-gaussian vector", "authors": [ "Vladimir Spokoiny" ], "comment": "arXiv admin note: text overlap with arXiv:2201.06327", "categories": [ "math.PR" ], "abstract": "Let \\( \\Xv \\) be a Gaussian zero mean vector with \\( \\Var(\\Xv) = \\BBH \\). Then \\( \\| \\Xv \\|^{2} \\) well concentrates around its expectation \\( \\dimA = \\E \\| \\Xv \\|^{2} = \\tr \\BBH \\) provided that the latter is sufficiently large. Namely, \\( \\P\\bigl( \\| \\Xv \\|^{2} - \\tr \\BBH > 2 \\sqrt{\\xx \\tr(\\BBH^{2})} + 2 \\| \\BBH \\| \\xx \\bigr) \\leq \\ex^{-\\xx} \\) and \\( \\P\\bigl( \\| \\Xv \\|^{2} - \\tr \\BBH < - 2 \\sqrt{\\xx \\tr(\\BBH^{2})} \\bigr) \\leq \\ex^{-\\xx} \\); see \\cite{laurentmassart2000}. This note provides an extension of these bounds to the case of a sub-gaussian vector \\( \\Xv \\). The results are based on the recent advances in Laplace approximation from \\cite{SpLaplace2022}.", "revisions": [ { "version": "v1", "updated": "2023-05-13T10:10:56.000Z" } ], "analyses": { "subjects": [ "62E15", "62E10" ], "keywords": [ "sharp deviation bounds", "sub-gaussian vector", "concentration phenomenon", "squared norm", "gaussian zero mean vector" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }