{ "id": "2305.07241", "version": "v1", "published": "2023-05-12T04:12:12.000Z", "updated": "2023-05-12T04:12:12.000Z", "title": "On the Optimality of Misspecified Kernel Ridge Regression", "authors": [ "Haobo Zhang", "Yicheng Li", "Weihao Lu", "Qian Lin" ], "comment": "23 pages, 6 figures, The Fortieth International Conference on Machine Learning. arXiv admin note: substantial text overlap with arXiv:2303.14942", "categories": [ "cs.LG", "math.ST", "stat.TH" ], "abstract": "In the misspecified kernel ridge regression problem, researchers usually assume the underground true function $f_{\\rho}^{*} \\in [\\mathcal{H}]^{s}$, a less-smooth interpolation space of a reproducing kernel Hilbert space (RKHS) $\\mathcal{H}$ for some $s\\in (0,1)$. The existing minimax optimal results require $\\|f_{\\rho}^{*}\\|_{L^{\\infty}}<\\infty$ which implicitly requires $s > \\alpha_{0}$ where $\\alpha_{0}\\in (0,1)$ is the embedding index, a constant depending on $\\mathcal{H}$. Whether the KRR is optimal for all $s\\in (0,1)$ is an outstanding problem lasting for years. In this paper, we show that KRR is minimax optimal for any $s\\in (0,1)$ when the $\\mathcal{H}$ is a Sobolev RKHS.", "revisions": [ { "version": "v1", "updated": "2023-05-12T04:12:12.000Z" } ], "analyses": { "keywords": [ "misspecified kernel ridge regression problem", "optimality", "underground true function", "existing minimax optimal results", "less-smooth interpolation space" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }