{ "id": "2305.06107", "version": "v1", "published": "2023-05-10T12:48:11.000Z", "updated": "2023-05-10T12:48:11.000Z", "title": "On real zeros of the Hurwitz zeta function", "authors": [ "Karin Ikeda" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we present results on the uniqueness of the real zeros of the Hurwitz zeta function in given intervals. The uniqueness in question, if the zeros exist, has already been proved for the intervals $(0,1)$ and $(-N-1, -N)$ for $N \\geq 4$ by Endo-Suzuki and Matsusaka respectively. We prove the uniqueness of the real zeros in the remaining intervals by examining the behavior of certain associated polynomials.", "revisions": [ { "version": "v1", "updated": "2023-05-10T12:48:11.000Z" } ], "analyses": { "subjects": [ "11M35" ], "keywords": [ "hurwitz zeta function", "real zeros", "uniqueness", "endo-suzuki" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }