{ "id": "2305.04016", "version": "v1", "published": "2023-05-06T11:18:17.000Z", "updated": "2023-05-06T11:18:17.000Z", "title": "A $(φ_\\frac{n}{s}, φ)$-Poincaré inequality in John domain", "authors": [ "Shangying Feng", "Tian Liang" ], "categories": [ "math.FA" ], "abstract": "Let $\\Omega$ be a bounded domain in $\\mathbb{R}^n$ with $n\\ge2$ and $s\\in(0,1)$. Assume that $\\phi : [0, \\infty) \\to [0, \\infty)$ be a Young function obeying the doubling condition with the constant $K_\\phi<2^{\\frac{n}{s}}$. We demonstrate that $\\Omega $ supports a $(\\phi_\\frac{n}{s}, \\phi)$-Poincar\\'e inequality if it is is a John domain. Alternately, assume further that $\\Omega$ is a bounded domain that is quasiconformally equivalent to some uniform domain when $n\\ge3$ or a simply connected domain when $n=2$. We demonstrate $\\Omega$ is a John domain if a $(\\phi_\\frac{n}{s}, \\phi)$-Poincar\\'e inequality holds.", "revisions": [ { "version": "v1", "updated": "2023-05-06T11:18:17.000Z" } ], "analyses": { "keywords": [ "john domain", "bounded domain", "poincare inequality holds", "demonstrate", "uniform domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }