{ "id": "2305.03889", "version": "v1", "published": "2023-05-06T01:21:43.000Z", "updated": "2023-05-06T01:21:43.000Z", "title": "Graphs that contain a $K_{1,2,3}$ and no induced subdivision of $K_4$ are $4$-colorable", "authors": [ "Rong Chen" ], "categories": [ "math.CO" ], "abstract": "In 2012, L\\'ev\\^eque, Maffray, and Trotignon conjectured that each graph $G$ that contains no induced subdivision of $K_4$ is $4$-colorable. In this paper, we prove that this conjecture holds when $G$ contains a $K_{1,2,3}$.", "revisions": [ { "version": "v1", "updated": "2023-05-06T01:21:43.000Z" } ], "analyses": { "keywords": [ "induced subdivision", "conjecture holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }