{ "id": "2305.02425", "version": "v1", "published": "2023-05-03T20:33:56.000Z", "updated": "2023-05-03T20:33:56.000Z", "title": "Stochastic wave equation with additive fractional noise: solvability and global Hölder continuity", "authors": [ "Shuhui Liu", "Yaozhong Hu", "Xiong Wang" ], "comment": "27 pages, 2 figures", "categories": [ "math.PR", "math.AP" ], "abstract": "We give the necessary and sufficient condition for the solvability of the stochastic wave equation $ \\frac{\\partial^2 }{\\partial t^2}u(t,x) =\\Delta u(t,x)+\\dot{W}(t,x)$ on $\\mathbb{R}^d$, where $W(t,x)$ is a fractional Brownian field with temporal Hurst parameter $H_0>1/2$ and spatial Hurst parameters $H_i\\in(0,1)$ for $i=1,\\cdots,d$. Moreover, we obtain the growth rate and the H\\\"older continuity of the solution on the whole space $\\mathbb{R}^d$ when $d=1$ and $H_0=1/2$.", "revisions": [ { "version": "v1", "updated": "2023-05-03T20:33:56.000Z" } ], "analyses": { "subjects": [ "60H15", "60H05", "60G15", "60G22" ], "keywords": [ "stochastic wave equation", "global hölder continuity", "additive fractional noise", "solvability", "fractional brownian field" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }