{ "id": "2305.02237", "version": "v1", "published": "2023-05-03T16:18:21.000Z", "updated": "2023-05-03T16:18:21.000Z", "title": "Finite time blow-up in higher dimensional two species problem in the Cauchy problem", "authors": [ "Tae Gab Ha", "Seyun Kim" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the blow-up radial solution of fully parabolic system with higher dimensional two species Cauchy problem for some initial condition. In addition, we show that the set of positive radial functions in $L^{1}(\\mathbb{R})\\cap BUC(\\mathbb{R}^{N}) \\times L^{1}(\\mathbb{R})\\cap BUC(\\mathbb{R}^{N}) \\times W^{1,1}(\\mathbb{R}^{N}) \\cap W^{1,\\infty}(\\mathbb{R}^{N})$ has a dense subset composed of positive radial initial data causing blow-up in finite time with respect to topology $L^{p}(\\mathbb{R}^{N}) \\times L^{p}(\\mathbb{R}^{N}) \\times H^{1}(\\mathbb{R}^{N})\\cap W^{1,1}(\\mathbb{R}^{N})$ for $p \\in \\left[1,\\frac{2N}{N+2}\\right)$.", "revisions": [ { "version": "v1", "updated": "2023-05-03T16:18:21.000Z" } ], "analyses": { "subjects": [ "35B44", "35Q92", "92C17" ], "keywords": [ "finite time blow-up", "cauchy problem", "higher dimensional", "species problem", "radial initial data causing blow-up" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }