{ "id": "2305.01956", "version": "v1", "published": "2023-05-03T08:16:24.000Z", "updated": "2023-05-03T08:16:24.000Z", "title": "Lower bounds for the number of number fields with Galois group $GL_2(\\mathbb{F}_\\ell)$", "authors": [ "Anwesh Ray" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $\\ell\\geq 5$ be a prime number and $\\mathbb{F}_\\ell$ denote the finite field with $\\ell$ elements. We show that the number of Galois extensions of the rationals with Galois group isomorphic to $GL_2(\\mathbb{F}_\\ell)$ and absolute discriminant bounded above by $X$ is asymptotically at least $\\frac{X^{\\frac{1}{12\\ell(\\ell-1)^2}}}{\\log X}$. We also obtain a similar result for the number of surjective homomorphisms $\\rho:Gal(\\bar{\\mathbb{Q}}/\\mathbb{Q})\\rightarrow GL_2(\\mathbb{F}_\\ell)$ ordered by the prime to $\\ell$ part of the Artin conductor of $\\rho$.", "revisions": [ { "version": "v1", "updated": "2023-05-03T08:16:24.000Z" } ], "analyses": { "subjects": [ "11R32", "11R45" ], "keywords": [ "number fields", "lower bounds", "galois group isomorphic", "galois extensions", "prime number" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }