{ "id": "2305.01340", "version": "v1", "published": "2023-05-02T11:38:42.000Z", "updated": "2023-05-02T11:38:42.000Z", "title": "A-posteriori error estimates for systems of hyperbolic conservation laws", "authors": [ "Jan Giesselmann", "Aleksey Sikstel" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "We provide rigorous and computable a-posteriori error estimates for first order finite-volume approximations of nonlinear systems of hyperbolic conservation laws in one spatial dimension. Our estimators rely on recent stability results by Bressan, Chiri and Shen and a novel method to compute negative order norms of residuals. Numerical experiments show that the error estimator converges with the rate predicted by a-priori error estimates.", "revisions": [ { "version": "v1", "updated": "2023-05-02T11:38:42.000Z" } ], "analyses": { "subjects": [ "35L40", "65M08", "65M15" ], "keywords": [ "hyperbolic conservation laws", "first order finite-volume approximations", "a-priori error estimates", "computable a-posteriori error estimates", "error estimator converges" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }