{ "id": "2305.00859", "version": "v1", "published": "2023-05-01T14:59:56.000Z", "updated": "2023-05-01T14:59:56.000Z", "title": "A Bishop-Phelps-Bollobas theorem for disc algebra", "authors": [ "Neeru Bala", "Jaydeb Sarkar", "Aryaman Sensarma" ], "comment": "12 pages", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "Let $\\mathbb{D}$ represent the open unit disc in $\\mathbb{C}$. Denote by $A(\\mathbb{D})$ the disc algebra, and $\\mathscr{B}(X, A(\\mathbb{\\mathbb{D}}))$ the Banach space of all bounded linear operators from a Banach space $X$ into $A(\\mathbb{D})$. We prove that, under the assumption of equicontinuity at a point in $\\partial \\mathbb{D}$, the Bishop-Phelps-Bollob\\'{a}s property holds for $\\mathscr{B}(X, A(\\mathbb{\\mathbb{D}}))$.", "revisions": [ { "version": "v1", "updated": "2023-05-01T14:59:56.000Z" } ], "analyses": { "subjects": [ "46E15", "46E22", "46H10", "30H05", "47L20", "46J10" ], "keywords": [ "disc algebra", "bishop-phelps-bollobas theorem", "banach space", "open unit disc", "bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }