{ "id": "2305.00834", "version": "v1", "published": "2023-05-01T14:03:47.000Z", "updated": "2023-05-01T14:03:47.000Z", "title": "Hilbert-Schmidt Estimates for Fermionic 2-Body Operators", "authors": [ "Martin Ravn Christiansen" ], "comment": "8 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We prove that the 2-body operator $\\gamma_2^\\Psi$ of a fermionic $N$-particle state $\\Psi$ obeys $||\\gamma_2^\\Psi||_{HS} \\leq \\sqrt{5} N$, which complements the bound of Yang that $||\\gamma_2^\\Psi||_{op} \\leq N$. This estimate furthermore resolves a conjecture of Carlen-Lieb-Reuvers (arXiv:1403.3816) concerning the entropy of the normalized 2-body operator. We also prove that the Hilbert-Schmidt norm of the truncated 2-body operator $\\gamma_2^{\\Psi,T}$ obeys the inequality $||\\gamma_2^{\\Psi,T}||_{HS} \\leq \\sqrt{5 N \\, \\mathrm{tr}(\\gamma_1^\\Psi (1 - \\gamma_1^\\Psi))}$.", "revisions": [ { "version": "v1", "updated": "2023-05-01T14:03:47.000Z" } ], "analyses": { "keywords": [ "hilbert-schmidt estimates", "particle state", "hilbert-schmidt norm", "complements" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }