{ "id": "2304.14858", "version": "v1", "published": "2023-04-28T14:10:16.000Z", "updated": "2023-04-28T14:10:16.000Z", "title": "Gradient higher integrability for double phase problems on metric measure spaces", "authors": [ "Juha Kinnunen", "Antonella Nastasi", "Cintia Pacchiano Camacho" ], "categories": [ "math.AP", "math.MG" ], "abstract": "We study local and global higher integrability properties for quasiminimizers of a class of double-phase integrals characterized by nonstandard growth conditions. We work purely on a variational level in the setting of a metric measure space with a doubling measure and a Poincar\\'e inequality. The main novelty is an intrinsic approach to double-phase Sobolev-Poincar\\'e inequalities.", "revisions": [ { "version": "v1", "updated": "2023-04-28T14:10:16.000Z" } ], "analyses": { "subjects": [ "49N60", "35J60", "30L99", "46E35" ], "keywords": [ "metric measure space", "gradient higher integrability", "double phase problems", "global higher integrability properties", "double-phase sobolev-poincare inequalities" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }