{ "id": "2304.14200", "version": "v1", "published": "2023-04-27T14:05:31.000Z", "updated": "2023-04-27T14:05:31.000Z", "title": "On the maximum number of subgroups of a finite group", "authors": [ "Marco Fusari", "Pablo Spiga" ], "comment": "13 pages", "categories": [ "math.GR" ], "abstract": "Given a finite group $R$, we let $\\mathrm{Sub}(R)$ denote the collection of all subgroups of $R$. We show that $|\\mathrm{Sub}(R)|< c\\cdot |R|^{\\frac{\\log_2|R|}{4}}$, where $c<7.372$ is an explicit absolute constant. This result is asymptotically best possible. Indeed, as $|R|$ tends to infinity and $R$ is an elementary abelian $2$-group, the ratio $$\\frac{|\\mathrm{Sub}(R)|}{|R|^{\\frac{\\log_2|R|}{4}}}$$ tends to $c$.", "revisions": [ { "version": "v1", "updated": "2023-04-27T14:05:31.000Z" } ], "analyses": { "keywords": [ "finite group", "maximum number", "explicit absolute constant", "elementary abelian", "collection" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }