{ "id": "2304.13993", "version": "v1", "published": "2023-04-27T07:29:54.000Z", "updated": "2023-04-27T07:29:54.000Z", "title": "Fourier transform on a cone and the minimal representation of even orthogonal group", "authors": [ "Nadya Gurevich", "David Kazhdan" ], "comment": "25 pages. To appear in Israel Journal of Mathematics", "categories": [ "math.RT" ], "abstract": "Let $G$ be an even orthogonal quasi-split group defined over a local non-archimedean field $F$. We describe the subspace of smooth vectors of the minimal representation of $G(F),$ realized on the space of square-integrable functions on a cone. Our main tool is the Fourier transform on the cone, for which we give an explicit formula.", "revisions": [ { "version": "v1", "updated": "2023-04-27T07:29:54.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "minimal representation", "fourier transform", "orthogonal group", "local non-archimedean field", "orthogonal quasi-split group" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }