{ "id": "2304.11322", "version": "v1", "published": "2023-04-22T05:25:33.000Z", "updated": "2023-04-22T05:25:33.000Z", "title": "On Gabor frames generated by B-splines, totally positive functions, and Hermite functions", "authors": [ "Riya Ghosh", "A. Antony Selvan" ], "comment": "31 pages, 11 figures, 2 tables", "categories": [ "math.FA" ], "abstract": "The frame set of a window $\\phi\\in L^2(\\mathbb{R})$ is the subset of all lattice parameters $(\\alpha, \\beta)\\in \\mathbb{R}^2_+$ such that $\\mathcal{G}(\\phi,\\alpha,\\beta)=\\{e^{2\\pi i\\beta m\\cdot}\\phi(\\cdot-\\alpha k) : k, m\\in\\mathbb{Z}\\}$ forms a frame for $L^2(\\mathbb{R})$. In this paper, we investigate the frame set of B-splines, totally positive functions, and Hermite functions. We derive a sufficient condition for Gabor frames using the connection between sampling theory in shift-invariant spaces and Gabor analysis. As a consequence, we obtain a new frame region belonging to the frame set of B-splines and Hermite functions. For a class of functions that includes certain totally positive functions, we prove that for any choice of lattice parameters $\\alpha, \\beta>0$ with $\\alpha\\beta<1,$ there exists a $\\gamma>0$ depending on $\\alpha\\beta$ such that $\\mathcal{G}(\\phi(\\gamma\\cdot),\\alpha,\\beta)$ forms a frame for $L^2(\\mathbb{R})$.", "revisions": [ { "version": "v1", "updated": "2023-04-22T05:25:33.000Z" } ], "analyses": { "subjects": [ "42C15", "94A20" ], "keywords": [ "totally positive functions", "hermite functions", "gabor frames", "frame set", "lattice parameters" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }