{ "id": "2304.10353", "version": "v1", "published": "2023-04-20T14:49:07.000Z", "updated": "2023-04-20T14:49:07.000Z", "title": "Sparse vertex cutsets and the maximum degree", "authors": [ "Stéphane Bessy", "Johannes Rauch", "Dieter Rautenbach", "Uéverton S. Souza" ], "categories": [ "math.CO" ], "abstract": "We show that every graph $G$ of maximum degree $\\Delta$ and sufficiently large order has a vertex cutset $S$ of order at most $\\Delta$ that induces a subgraph $G[S]$ of maximum degree at most $\\Delta-3$. For $\\Delta\\in \\{ 4,5\\}$, we refine this result by considering also the average degree of $G[S]$. If $G$ has no $K_{r,r}$ subgraph, then we show the existence of a vertex cutset that induces a subgraph of maximum degree at most $\\left(1-\\frac{1}{{r\\choose 2}}\\right)\\Delta+O(1)$.", "revisions": [ { "version": "v1", "updated": "2023-04-20T14:49:07.000Z" } ], "analyses": { "keywords": [ "maximum degree", "sparse vertex cutsets", "average degree", "sufficiently large order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }