{ "id": "2304.10345", "version": "v1", "published": "2023-04-20T14:34:06.000Z", "updated": "2023-04-20T14:34:06.000Z", "title": "The ${\\rm SL}(2,\\mathbb{C})$-character variety of an arborescent knot", "authors": [ "Haimiao Chen" ], "comment": "14 pages, 7 figures", "categories": [ "math.GT" ], "abstract": "We clarify steps for determining the ${\\rm SL}(2,\\mathbb{C})$-character variety of any arborescent knot. Interestingly, we show that the `excellent parts' of arborescent knots $K_1,K_2$ are isomorphic if $K_1$ can be related to $K_2$ through certain moves on projection diagrams. Furthermore, we give a sufficient condition in terms of diagram for the existence of components of dimension larger than $1$. A generalization to arborescent links is sketched.", "revisions": [ { "version": "v1", "updated": "2023-04-20T14:34:06.000Z" } ], "analyses": { "subjects": [ "57K10", "57K31" ], "keywords": [ "arborescent knot", "character variety", "arborescent links", "dimension larger", "excellent parts" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }