{ "id": "2304.09312", "version": "v1", "published": "2023-04-18T21:50:34.000Z", "updated": "2023-04-18T21:50:34.000Z", "title": "A bound on the number of twice-punctured tori in a knot exterior", "authors": [ "Román Aranda", "Enrique Ramírez-Losada", "Jesús Rodríguez-Viorato" ], "comment": "15 pages, 6 figures", "categories": [ "math.GT" ], "abstract": "This paper continues a program due to Motegi regarding universal bounds for the number of non-isotopic essential $n$-punctured tori in the complement of a hyperbolic knot in $S^3$. For $n=1$, Valdez-S\\'anchez showed that there are at most five non-isotopic Seifert tori in the exterior of a hyperbolic knot. In this paper, we address the case $n=2$. We show that there are at most six non-isotopic, nested, essential 2-holed tori in the complement of every hyperbolic knot.", "revisions": [ { "version": "v1", "updated": "2023-04-18T21:50:34.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "knot exterior", "twice-punctured tori", "hyperbolic knot", "motegi regarding universal bounds", "non-isotopic seifert tori" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }